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The suppression of the turbulent dynamics of excit-
able media, which appears through a set of coexisting
spiral waves, by means of a small periodical (almost)
point action is a very important area of current investi-
gations in view of application in cardiology. The domi-
nating hypothesis in the current theory of excitable sys-
tems is that fatal cardiac arrhythmias, fibrillations,
occur due to the creation of numerous autowave
sources, spiral waves or vortex structures (i.e., spa-
tiotemporal chaos, see, e.g., [1, 2] and references
therein), in cardiac tissue.

The current methods for stabilizing such regimes by
means of single electrical pulses (including those from
implanted defibrillators) are very inflexible and are not
necessarily successful. However, recent investigations
open new possibilities. A large-amplitude pulsed action
is not directly necessary and can be weakened in a num-
ber of cases [3]. Moreover, the turbulent regime in
many excitable media can be stabilized by a weak peri-
odic parametric [4, 5] or force action applied to certain
medium regions [6–9].

In this work, for the simple FitzHugh–Nagumo
model [10] of the excitable medium in the modification
proposed for describing cardiac tissue [11], it is shown
that the turbulent dynamics appearing owing to the
decay of spiral waves can be suppressed using a small-
amplitude point action. In addition, the problem of
determining the frequencies and amplitudes that ensure
the effective suppression of all spiral waves is solved.
After such stabilization, the medium remains in the
spatially uniform state.

The FitzHugh–Nagumo model describes the two-
component activator–inhibitor system:

(1)

In application to the dynamics of cardiac muscle, the
variable 

 

U

 

 corresponds to the action potential of car-
diac cells. This model is widely used as the basic model
and satisfactorily describes the propagation of an exci-
tation in cardiac tissue at the qualitative level, because
it demonstrates the basic types of structures appearing
in excitable activator–inhibitor media. Nevertheless, it
is inapplicable for quantitative analysis, because it does
not involve certain important properties of cardiac tis-
sue such as the dependence of the refractory period on
the amplitude and duration of the excitation phase.

In order to develop a more adequate description,
system (1) is usually represented in the generalized
form

(2)

where the functions 

 

f

 

 and 

 

g

 

 are chosen so as to ensure
the correspondence of the resulting profiles of the
action potential to experimental data.
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At present, the model proposed in [11] is widely
used, where 

 

f

 

 and 

 

g

 

 are piecewise-linear functions:

(3)

One of its advantages is the presence of two indepen-
dent relaxation parameters. One of them (

 

G

 

3

 

) deter-
mines the relative relaxation period for small 

 

U

 

 and 

 

V

 

values. The other parameter (

 

G

 

1

 

) specifies the absolute
relaxation period for large 

 

V

 

 values and intermediate 

 

U

 

values, which correspond to the forward and backward
fronts of waves. For greater correspondence to cardiac
tissue, the system parameters are taken as follows: 

 

C

 

1

 

 =
20, 

 

C

 

2

 

 = 3, 

 

C

 

3

 

 = 15, 

 

U

 

1

 

 = 0.0026, 

 

U

 

2

 

 = 0.837, 

 

V

 

1

 

 = 1.8,

 

a

 

 = 0.06, and 

 

k

 

 = 3. In this case, 1/100 

 

≤

 

 

 

G

 

1

 

 

 

≤

 

 1/33, 

 

G

 

2

 

 =
1, and 0.1 

 

≤

 

 

 

G

 

3

 

 

 

≤

 

 2.0.

In spite of its simplicity, the model given by Eqs. (2)
and (3) describes real experimental data sufficiently
well even with the myocardium tissues of mammals
[12]. For example, it correctly reproduces the shape of
the action potential when varying the parameters and
initial conditions in wide intervals and can demonstrate
all types of structures inherent in excitable tissue.
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The dynamics of the system given by Eqs. (2) and
(3) is considered in the square region 350 

 

×

 

 350 node in
size. To exclude edge effects, the periodic conditions
are specified at the boundaries; i.e., the domain under
investigation has torus topology. Autowave solutions of
the spiral wave type are unstable in the parameter inter-
vals indicated above. With time, they decay into smaller
waves, so that the spatiotemporal-chaos regime thereby
develops in the system (see Fig. 1). Excited sections of
the medium are shown in Fig. 1 in white, the dark color
corresponds to the refractory state, and light gray
domains correspond to the rest state.

Spiral waves constitute the basic type of autowave
solutions in this system, which allows one to use their
number as a criterion of complexity of the regime exist-
ing in the system. However, it is impossible to separate
each spiral in the situation of production–walk–annihi-
lation. Nevertheless, the problem is simplified, because
the core of each spiral wave is its indispensable
attribute.

There are several approaches to solving the problem
of identifying the number of spiral waves in the
medium [13–16]. In this work, we use the method pro-
posed in [13] that is based on the fact that the core of
the spiral wave (as well as any point of discontinuity of
the wave front) is a singularity for the phase field
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this case, the quantity

n
1

2π
------ ∇ϕdl,∫°=

time 140 s time 1763 s

time 2986 s time @ s

time 2385 s

time @ s

Fig. 1. Destruction of a spiral wave and creation of chaos for the parameters G1 = 0.01 and G3 = 0.5.
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which is called the topological charge, is not equal to
zero only for the case where such a singularity is
located within the integration contour. In this case, n is
an integer, whose sign determines the chirality of the
spiral wave.

Figure 2 shows the time dependence of the thus cal-
culated number of the cores of spiral waves when chaos
appears from a destroyed single spiral wave in the sys-
tem specified by Eq. (3). This figure corresponds to the
spatial pattern shown in Fig. 1. This regime was used
for further analysis as the initial state of the system
when studying the possibility of the suppression of tur-
bulent dynamics.

At present, there are two qualitatively different
approaches to this problem. The first of them ensures
the transformation of the system from the chaotic
regime to the regular one by means of external pertur-
bations without feedback; i.e., it does not take into
account the current state of the system. This method
was proposed and justified in [17, 18]. A qualitatively
different method is implemented by means of a correct-
ing action and thereby involves feedback as a necessary
component of the dynamical system [19]. In the last
15 years, it has become popular owing to its successful
use. However, it is inapplicable to solve the problem
formulated above, because it is applicable only for con-
centrated systems. In turn, each of these methods can be
implemented by the parametric or force method. The
introduction of feedback is a certain advantage,
because such a method of the external action leads to a
required result in most cases. At the same time, meth-
ods without feedback are more stable under noise
actions, and this property significantly simplifies their
use in applications.

For certain reasons, the parametric method has cer-
tain advantages over the force method. One of them is

that, owing to the additive external action, phase trajec-
tories can leave the physically allowable region. At the
same time, the parametric action means change in the
resources of the system and, thus, is finer than the force
action.

For the system given by Eqs. (2) and (3) considered
in this work, the situation is opposite: its dynamics is
determined by the electrochemical potentials of muscle
cells and forced change in their properties (such as cell-
membrane capacitance, the intensity of the operation of
ion pumps, the conductivity of ion channels, etc.)
requires the periodic removal injection of certain sub-
stances. This is very laborious (if even possible), the
more so as immediate intervention is required when
fibrillation is developed. The implementation of addi-
tive perturbation is much simpler: it is sufficient to
introduce electrodes into tissue and to supply pulses
through these electrodes. Implanted defibrillators oper-
ate in such a way. In this case, the shape of the pulse, as
well as its frequency and amplitude, can be varied in a
wide interval.

For these reasons, we use point action. In this case,
the initial system given by Eq. (3) acquires the form

(4)

Here, the external potential is specified by the function

Ii(x, y, t) = (x, y)ϕi(t), where A is the voltage ampli-
tude on the electrodes, Ωi is the region of contact with
the ith electrode, SΩ(x, y) is the marker function of the
region Ω , which is equal to one and zero inside and out-
side the region Ω , respectively, and ϕi(t) is a periodic
time function. The region Ω is taken in the form of a
small square (point electrode approximation).

Thus, a combinatorial optimization problem with
three unknowns—amplitude, frequency, and pulse
shape—appears.

In this work, we used several various pulse shapes of
the external action. However, suppression was
observed only for biphase rectangular and biphase saw-
tooth pulses. A biphase pulse is necessary in this case,
because the action potential of cells simulated by
Eq. (4) has both a positive and negative part. For this
reason, the action shape must also have a negative
action, which promotes the repolarization phase of
cells.

Since a random search for suppression frequencies
is very inefficient, we used a method that makes it pos-

∂U
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Fig. 2. Time dependence of the number of the cores of spiral
waves when a single spiral wave is destroyed and chaos
appears for the parameters G1 = 0.01 and G3 = 0.5.
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sible to preliminarily localize frequency intervals
ensuring suppression. This method is based on a known
property of excitable media: among competitive wave
sources, the source with the highest frequency of gen-
erated waves survives. Thus, the most favorable fre-
quencies for suppression are external-action frequen-
cies at which the frequency of circular waves excited by
them is close to the maximum possible value for given
medium parameters. In this case, it is necessary to take
into account that the spiral waves cannot excite the
medium in the relative refractory period, because addi-
tional energy is required. This is possible only with an
external excitation source whose action amplitude
exceeds the excitation threshold. Owing to this feature,
the pacemaker can generate circular waves with a fre-
quency higher than the frequency of spiral waves. It is
clear that the efficiency of suppression depends directly

on the difference between these frequencies. In our
problem, this difference is small and the efficiency of
suppression is significantly affected by other factors
such as initial conditions, the drift of spiral waves, etc.
We do not consider these factors and use only the first
approximation. However, even the first approximation
provides an important conclusion: the suppression of
the turbulent dynamics of the medium in a finite time is
possible.

In order to achieve suppression, it is necessary to
determine the interval of the maximum natural frequen-
cies of circular waves. This interval appears to be very
narrow (~0.05) for the system under investigation. This
means that it is necessary to scan a sufficiently wide fre-
quency range with a small step (~0.01) in order to
determine the efficient frequencies. In combination
with the computational inconvenience of the problem,
this strongly hinders solving the problem. For this rea-
son, we use a method described in, e.g., [6]. In a small
region of the medium, circular waves are generated and
the frequency ν of generated waves is determined as a
function of the natural frequency ω of the point source
(see Fig. 3). The frequency intervals near the maxima of
this dependence are considered as candidates for
deeper analysis.

When seeking the efficient-suppression amplitudes,
it is necessary to take into account that the action mag-
nitude must be on the order of the amplitude of excita-
tions inherent in this system. Moreover, it must corre-
spond to the previously determined frequency.

It is worth noting that, to construct the dependence
ν(ω), it is sufficient to simulate a small medium region
with a size of several tens of periods. However, to verify
the existence or absence of the suppression effect at a
given frequency, it is necessary to consider large
medium regions with a size of several hundred periods,

Fig. 3. Dependence ν(ω) for the parameters G1 = 0.01 and
G3 = 0.5.

time 887.0 s time 9781.1 s

External pacemaker

Fig. 4. Result of the point action on the system with developed spatiotemporal chaos for the parameters G1 = 0.02, G3 = 0.3, and
A = 6.



528

JETP LETTERS      Vol. 84      No. 9      2006

LOSKUTOV, VYSOTSKIŒ

because otherwise the turbulent regime is not suffi-
ciently developed.

System (3) is investigated for various values of the
parameters G1and G3, which are responsible for the
refractory period. We analyzed values corresponding to
long refractory periods and unstable wave fronts.
Although we also considered the case of stable wave
fronts, some interesting processes such as the recovery
of chaos in the system after suppression are not
observed in this case. We succeeded in the suppression
of chaos in the system for almost all parameter values
considered to date. Figure 4 shows the result of the sup-
pression of the turbulent dynamics at frequencies near
the maximum of the dependence ν(ω).

The numerical analysis shows that the stabilization
of dynamics by one source is not necessarily possible.
This is associated with the complex behavior of the sys-
tem when wave fronts are unstable and boundary con-
ditions are periodic. For example, a case where the
external source at the initial time is surrounded by wave
fronts of nearest spirals is possible. In this case, this
source is suppressed by arms of spiral waves for a long
time. Owing to periodic boundary conditions, the colli-
sion of two wave fronts from the external source is also
possible. In this case, an unstable “island” of the refrac-
tory region is formed in the collision region, and the
wave fronts of the next pulses can decay in contact with
this island, which leads to the renewal of spiral waves
and even to the suppression of the external source.

For this reason, we also analyze the behavior of the
system with several (from two to eight) external excita-
tion sources. Figure 5 shows the case of the stabiliza-
tion by four sources. In this case, the efficiency of sup-
pression strongly depends on the distance between
them. In contrast to expectation, this dependence is far
from linear.

It is worth noting that the amplitudes used in the
model that are recalculated to volts are approximately

one thousand times lower than pulses used in implanted
defibrillators. This can be very important in applica-
tions, because patients have strong pain shock from
implanted defibrillators and, as a result, feel stress in
the expectation of repeated pulses. In addition, such a
pulse leads to the destruction of cardiac cells.

Thus, the theory of dynamical systems [20] can be a
key to a more fundamental understanding of fibrillation
and its therapy. The general conclusion of this work is
as follows. To solve the defibrillation in the parametric
medium space, it is necessary to find the regions corre-
sponding to the developed spiral wave turbulence.
Then, the introduction of a weak point excitation with
a certain frequency and shape leads to the complete dis-
placement of all spiral waves, i.e., to defibrillation.
There are all backgrounds for experimental verification
of this result in high-technology clinical laboratories
[3].
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